Skip to content

Сообщения из ‘Articles’ категории

3
Mar

Mohsen M.N., Jwad A.H. Energy balanced sink node positioning in a wireless sensor network using a simple model

Energy balanced sink node positioning in a wireless sensor network using a simple model

Mohsen M.N., Jwad A.H.

The paper presents a new model of a wireless sensor network and its application for the optimization of network power consumption due to the optimization of connections between the units, taking into account the capacity of the power supply unit, the amount of information collected and transmitted by the unit, as well as the unit power capacity between the units and its quantitative estimate. The model can be used to optimize the energy consumption structure in a wireless network in order to increase the network off-line operation time (that is the time until the first unit failure happens because of battery exhaustion). The urgency of the problem is proved. The model is given in terms of graph theory. The detailed description of the task to optimize the network energy consumption for its longer off-line operation time is given; the approach to dealing the problem, based on the solution of the corresponding linear programming task, is described. The implementation of the solution in the form of a computer program is provided. The results of computer simulations are shown, and the conclusions regarding the applicability of the technology in practice are given.
Keywords: wireless networks of sensors, wireless sensor networks, WSNs, energy optimization, energy balancing.

References

  1. Dargie W., Poellabauer C. Fundamentals of Wireless Sensor Networks: Theory and Practice. – John Wiley & Sons Ltd., 2010. – 311 p.
  2. Whitaker М., Bocharnikov I. Energy Harvesting. A new stage in the development of stand-alone devices // Components and technologies, 2010, № 8. – P. 146–169.
  3. Mochalov V.А. Method of synthesis of fault-tolerant sensor network structure with constraints on placement of network nodes in heterogeneous space // T-Comm: Telecommunications and transport, 2012, № 10. – P. 71–75.
  4. Kireev А. О. Distributed system energy monitoring of wireless sensor networks // Proceedings of the SFU Engineering, 2011, vol. 118, № 5. – P. 60–65.
  5. Ishmanov F., Malik A.S., Kim S.W. Energy consumption balancing (ECB) issues and mechanisms in wireless sensor networks (WSNs): a comprehensive overview // European Transactions on Telecommunications, 2011, vol. 22. – P. 151–167.
  6. Voskov L.С., Komarov М.М. The method of energy balancing fixed wireless sensor network with independent power sources // Information systems and technology business, 2012, vol. 19, №. 1. – P. 70–75.
  7. Yefremov S. G., Voskov L.C. The problem of increasing the battery life of wireless sensor networks in data collection systems and the way to solve it // Sensors and systems, 2013, № 4. – P. 2–6.
  8. Voskov L.С., Komarov М.М. Positioning sensors wireless sensor network as a way to saving // Sensors and Systems, 2012, № 1. – P. 34–38.
  9. Bouabdallah F., Bouabdallah N., Boutaba R. On balancing energy consumption in wireless sensor networks // IEEE Transactions on Vehicu-lar Technology, 2009, vol. 58, № 6. – P. 2909–2924.
  10. Optimal location node-flow in wireless sensor network [Text]: communication of state registration of computer programs 2014610877 in the Russian Federation / M.N. Mohsen, I. V. Boguslavskiy. – № 2013660754; Appl 21.11.2013; Publ. 17.01.2014. – 1 p.

«Engineering industry and life safety» №3 (21), 2014. Pages: 17-23

Download full text:Mohsen M.N., Jwad A.H. Energy balanced sink node positioning in a wireless sensor network using a simple model

View russian version


Moshen Mohammed Neama Moshen – Graduate student, Don State Technical University, Baghdad, Iraq. E-mail: Mohammed.naima@gmail.com

Jwad Ahmed Hashim Khalil – Graduate student, Voronezh State Forestry Engineering Academy, Baghdad, Iraq. E-mail: ahk_ahkahk@yahoo.com

3
Mar

Elobaeva L.V. Atom and energy for people benefit

Atom and energy for people benefit

Elobaeva L.V.

Nowadays, nuclear power is the most reliable and economical way to provide the country with electric power. The use of nuclear power plants equipped with thermal neutrons reactors is ever growing. But only a small amount of uranium can be consumed for energy generation. Therefore, aiming at employing only thermal neutrons reactors, nuclear power engineering isn’t very advantageous compared to normal power engineering. Thus, nuclear power plants equipped with thermal neutrons reactors won’t solve the “energy crisis” problem. It’s quite a different thing to use nuclear power plants provided with fast neutrons reactors when all the extracted uranium is practically consumed. It means that the potential resources of nuclear power engineering with such reactors can increase its efficiency many times compared to the power engineering relying on organic fuel, which makes nuclear power engineering an inexhaustible power source.
Keywords: nuclear power engineering, a nuclear power plant, a gas-cooled reactor, energy crisis.

References

  1. Sharapov R.V. Global’nye jekologicheskie katastrofy: mif ili real’nost’? [Global ecological catastrophe: myth or reality?] // Mashinostroenie i bezopasnost’ zhiznedejatel’nosti [Engineering industry and life safety], 2011, № 1. – P.14-10.
  2. Sharapov R.,Kuzichkin O. Monitoring of Karst-Suffusion Formation in  Area of Nuclear Power Plant// Proceedings of the 7th 2013 IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), 12-14 September 2013, Berlin, Germany. Vol. 2, 2013. P. 810-813.
  3. Tchaikovskaya N.V., Kuzichkin O.R., Sharapov R.V., Kuzichkina E.O. Problemy razmeshhenija Nizhegorodskoj AJeS na ploshhadke Monakovo [Accommodation problems of Nizhniy Novgorod NPP in Monakovo] // Mashinostroenie i bezopasnost’ zhiznedejatel’nosti [Engineering industry and life safety], 2013, № 3. – P.27-36.

«Engineering industry and life safety» №3 (21), 2014. Pages: 13-16

Download full text:Elobaeva L.V. Atom and energy for people benefit

View russian version


Elobaeva Lyudmila Vladimirovna – geography teacher, school № 20, Murom, Russia. E-mail: elobaeva@mail.ru

3
Mar

Grigoryuk E.N. The function of simulation in the monitoring system of a complex technological process

The function of simulation in the monitoring system of a complex technological process

Grigoryuk E.N.

The paper presents the monitoring system for a complex process of a closed-type manufacture. According to the patents, cap-igniter manufacturing process aiming at the development of a simulation model is described. The simulation process is completed by means of Simulink computer program in Matlab complex. The simulation model is designed to minimize damage from unwanted energy emissions at the most troublesome area from the point of view of technosphere security, and thus it is of great economic value to the manufacturer. Simulation makes it possible to detect the negative aspects of the manufacturing process, affecting both technical staff and the environment of the region, as well as to develop a program for reducing the risk and achieving economic benefits. The information under consideration is an attempt to define the function of simulation for the monitoring system of a complex technological process.
Keywords: economic effect, a complete technological cycle, management system, a technological process, material and energy resources, a simulation model, event probability, an accident tree.

References

  1. Vorobyov Y.L, Akimov V.A., Sokolov J.L. Postindustrial’nye riski Rossii[Postindustrial risks Russia] // Problemy analiza riska [Problems of risk analysis], 2009, Т.6, №4. – P.8-24.
  2. V Samarskoj oblasti na poligone vzorvalis’ boepripasy [Samara Region landfill exploded ammunition] // Altapress.ru [Electronic resource]. Access mode: www. altapress.ru/story/109601.
  3. Taranenko M.G Modernizacija struktury social’noj organizacii oboronnogo predprijatija kak problema oboronno-proizvodstvennoj bezopasnosti [Modernization of the structure of social organization of the defense enterprise as a problem of the defense industrial safety] // Vestnik Severnogo (Arkticheskogo) Federal’nogo universiteta. Serija: Gumanitarnye i social’nye nauki [Bulletin of the Northern (Arctic) Federal University. Series: Humanities and Social Sciences], 2011, №1. – P.62-66.
  4. Poustovit A.E., Kozlov V.I. Metodika rascheta indeksa bezopasnosti truda [Method of calculating the index safety] // Vestnik Kuzbasskogo gosudarstvennogo tehnicheskogo universiteta [Herald Kuzbass State Technical University], 2013, №3. – P.65-68.
  5. Potapova T.B. Strukturnyj analiz sistemy upravlenija nepreryvnym zamknutym proizvodstvom [Structural analysis of the control system closed continuous production] // Pribory i sistemy upravlenija [Instruments and Control Systems], 1999, № 12. – P.16-24.http://www.solinst.com/products/data/9100.pdf
  6. Kurilov I.A., Grigoruk E.N., Kalinichenko M.V., Kirillov I.N., Lachine A.E., Bulkin V.V. Principy upravlenija informacionnymi potokami v tehnologicheskih processah [Principles of information management in processes] // Metody i ustrojstva peredachi obrabotki informacii [Methods and devices transmit information processing], 2013, № 1. – P.13-18.
  7. Grigoryuk E.N. Primenenie jempiricheskih metodov nauchnogo poznanija pri razrabotke sistemy upravlenija bezopasnost’ju promyshlennogo proizvodstva [Application of empirical methods of scientific knowledge in the development of production safety management systems] // Mashinostroenie i bezopasnost’ zhiznedejatel’nosti [Engineering industry and life safety], 2013, № 4. – P.5-11.
  8. Otkrytoe Akcionernoe Obshhestvo «Muromskij Priborostroitel’nyj Zavod» [Open Joint Stock Company «Murom Instrument Factory»] // [Electronic resource]. Access mode: www.mpzflame.ru/primers.php
  9. RF Patent 2436036 F42C 19/10, F42B 3/195. Linija izgotovlenija kapsjulej-vosplamenitelej [Production line of blasting igniters]. / Volkov V.S., Bibnev N.M., Vedeneev M.F., Demidov V.A., Kuzmin S.A., Khovanskov V.N., Babochkin S.Y. / Publ. 10.12.2011, BIPM № 34.
  10. RF Patent 2174668 F42C 19/10, F42B 3/195. Sposob sborki kapsjulej-vosplamenitelej v ustrojstvo press-instrumenta dlja ego osushhestvlenija [A method of assembling blasting ignition device in a press tool for its implementation]. / Merkulov V.A., Avseenko I.M., Kiselev V.N., Danilenko A.M., Merkulov S.A. / Publ. 26.01.2000.
  11. RF Patent 2106330 C06В. Neorzhavljajushhij udarnyj sostav [No rusting percussion composition]. / Botin V.A., Khovanskov V.N., Dydyukin V.N., Okishev O.I., Karachiv G.N., Mushkaev A.K., Bibnev N.M., Belyaev V.V., Rudakov E.V., Potridenny V.V., Savin A.P., Kotorov N.E. / Publ. 10.03.1998.
  12. Korobchuk M.V., Verigin A.N., Dzhangiryan V.G., Fadeev D.V., Abdullin I.A. Sovremennoe smesitel’noe oborudovanie dlja prigotovlenija mnogokomponentnyh jenergonasyshhennyh kompozicij [Modern mixing equipment for the preparation of multi-energy-tracks] // Vestnik Kazanskogo tehnicheskogo universiteta [Bul-letin of the Kazan University of Technology], 2013, vol.16, № 4. – P.240-243.
  13. Terehin V.V. Modelirovanie v sisteme MATLAB: Uchebnoe posobie [Simulation of the system MATLAB: Textbook] / Kemerovo State University. – Novokuznetsk, Kuzbassvuzizdat 2004. – 376 p.
  14. Matiab: Reference book. – St. Petersburg, Piter, 2003.
  15. Sereda S.N. Jekonomicheskie faktory jekologicheskoj bezopasnosti [Economic factors of environmental safety] // Fundamental’nye issledovanija [Fundamental Research], 2003, vol. 8, № 11. – P.1598-1601.
  16. Belov P.G. Sistemnyj analiz i modelirovanie opasnyh processov v tehnosfere [System analysis and modeling of the dangerous processes in techosphere]. – Moscow, Academia, 2003. 512 p.

«Engineering industry and life safety» №3 (21), 2014. Pages: 5-12

Download full text:Grigoryuk E.N. The function of simulation in the monitoring system of a complex technological process

View russian version


Grigoryuk Ekaterina Nikolaevna – Graduate student, Murom Institute of Vladimir State University, Murom, Russia. E-mail: kat-grigoryuk@yandex.ru

20
Jul

Khudyakova E.O., Purtov A.S. Tool adjustment for the nanometric precision lathe

Tool adjustment for the nanometric precision lathe

Khudyakova E.O., Purtov A.S.

The paper refers to mechanical engineering, namely, to the field of high precision lathes manufacture and can be used to solve the problems of tool adjustment for automated machining the objects featuring a complex dimensional profile that claims high demands on quality and precision of the machined surface. The surface is processed by turning (a lathe cutter) on the working surface of the functional blank layers (for example, metalloptical mirrors). For this purpose, nanometric precision lathes provided with a numerical control system (NCS) are used. Current techniques of tool adjustment are analyzed, as well as their drawbacks. The paper presents a new way of tool lathe adjustment using high precision optical laser sensors that makes it possible to upgrade positioning accuracy up to 0.1 mkm.

Keywords: NCS machine, lathe tool adjustment by means of a laser sensor, adjustment of lathe with optical indexation system.

References

  1. Kontaktnye izmeritel’nye sistemy dlja stankov s ChPU. H-2000-3022-08-A. Tehnicheskie harakteristiki [Probing systems for CNC machine tools. H-2000-3022-08-A. Specifications]. – Renishaw plc., 2006.
  2. Optical sensors / http://rusautomation.ru/opticheskie_datchiki
  3. Laser sensors with digital and analog outputs / http://www.smt21.ru/catalog/datchiki/bezkontakt_ sensor/ldat/

«Engineering industry and life safety» №2 (20), 2014. Pages: 74-77

Download full text:Khudyakova E.O., Purtov A.S. Tool adjustment for the nanometric precision lathe

View russian version


Khudyakova Ekaterina Olegovna – Ph.D., Vladimir State University, Vladimir, Russia. E-mail: wertyus@mail.ru

Purtov Aleksandr Sergeevich – Student, Vladimir State University, Vladimir, Russia. E-mail: asp780@mail.ru

20
Jul

Kokoreva O.G. The research on wave propagation in a plastic sample based on the plastic flow theory

The research on wave propagation in a plastic sample based on the plastic flow theory

Kokoreva O.G.

The paper presents the research results on mechanical properties of materials under pulsed loads. The effect of dynamic loads in technological processes of part surface plastic flow (deformation) is considered. The relation-ship of strength analysis to the strain rate under pulsed loads is given. Plastic wave propagation process in a metal sample is discussed. The part surface stress state mechanism under pulse loads is described. Calculation results analysis of dynamic strength material characteristics, using the theory of strain and stress wave propaga-tion, is performed. The sample movement equation under the plastic flow theory is given. The paper presents accurate results on determining mechanical properties of materials under dynamic loads, following the flow and strain wave propagation. Wave propagation in solids is described by means of gap functions propagation and their derivatives.

Keywords: dynamic loads; strength characteristics; deformation; voltage; sample; movement equation; wave processes; mechanical properties.

References

  1. Kukudzhanov V.N. Rasprostranenie cilindricheskih udarnyh voln naprjazhenija v plastinke za predelom tekuchesti [Propagation of cylindrical shock wave in a plate beyond the yield stress] // Proceedings of MIPT, 1959, № 3.
  2. Kurant R. Uravnenija s chastnymi proizvodnymi [Partial Differential Equations]. – Moscow: Mir, 1964.
  3. Fridriche K., Kurant R.Sverhzvukovoe techenie i udarnye volny [Supersonic Flow and Shock Waves]. – Moscow: Il, 1950.
  4. Nadeeva R.I. Ob opredelenii dinamicheskoj zavisimosti mezhdu naprjazhenijami i deformacijami [On the determination of the dynamic relationship between stress and strain] // Vestnik MSU, 1953, №10.
  5. Orlenko L.P. Povedenie materialov pri intensivnyh dinamicheskih nagruzkah [Behavior of materials under intense dynamic loads]. – Moscow: Mashinostroenie, 1964.
  6. Pavlenko A.L. Prjamoj udar po gibkoj plastine telom vrashhenija zadannogo profilja [Direct blow to the flexible plate body rotation given profile] // Dissertation Research Institute of Mechanics and Mathematics MSU, 1952.
  7. Polovtseva V.S. Ob jeksperimental’nom issledovanii normal’nogo udara po gibkoj membrane [An experimental investigation of the normal impact on a flexible membrane] //Vestnik MSU, 1967, №6.
  8. Rabotnikov Y.N. Moscow: Fizmatgiz, 1962.
  9. Rachmatulin H.A., Demjanov Y.A. Prochnost’ pri intensivnyh kratkovremennyh nagruzkah [Tensile intense transient load] – Moscow: Fizmatgiz, 1961.
  10. Smirnov V.I. Kurs vysshej matematiki [Course of Higher Mathematics], vol.IV. – Moscow: Gostechteorizdat, 1951.
  11. Sokolov L.D. Soprotivlenie metallov plasticheskoj deformacii[Resistance to plastic deformation of metals]. – Moscow: Metallurgizdat, 1963.
  12. Tomas T. Plasticheskoe techenie i razrushenie v tverdyh telah[Plastic flow and fracture in solids]. – Moscow: Mir, 1964.
  13. Freudenthal A., Geiringer H.Matematicheskie teorii neuprugoj sploshnoj sredy [Mathematical theory of inelastic continuous media]. –Moscow: Fizmatgiz, 1962.

«Engineering industry and life safety» №2 (20), 2014. Pages: 69-73

Download full text:Kokoreva O.G. The research on wave propagation in a plastic sample based on the plastic flow theory

View russian version


Kokoreva Olga Grigorjevna – Ph.D., Murom Institute of Vladimir State University, Murom, Russia. E-mail: kokoreva_olga_2.11@mail.ru

20
Jul

Karpov A.V. Revisiting power efficiency estimation of technological processes of cutting

Revisiting power efficiency estimation of technological processes of cutting

Karpov A.V.

The paper deals with the problem of efficient energy resources consumption when processing blanks of machine parts by means of cutting tools. The energy efficiency increase of technological processes is considered as a necessary factor to ensure national production competitiveness of the mechanical-engineering complex. The problem of increasing energy efficiency of the cutting process is multi-staged. The paper considers a number of techniques to optimize the provisions for the cutting process: geometrical parameters of the cutting part of the tool and the values of processing modes. The paper presents a new integral index of energy efficiency (power efficiency) of the cutting process, which is, in fact, a ratio of processing energy density to the processed material strength. The paper gives a number of calculation-empirical methods to determine energy efficiency criteria, following the example of processing a rectangular groove by a horizontal milling machine disk cutter. Implementing the optimization technique can reduce energy costs in the cutting zone by 12-18% compared to the processing provisions based on the modes provided in General mechanical-engineering reference books.

Keywords: mechanical engineering, technological system, materials cutting, a cutting tool, power efficiency, energy expenses, power consumption.

References

  1. Karpov A.V., Ignatov S.N., Raspopin A.P.Ocenka jeffektivnosti lezvijnoj obrabotki s ispol’zovaniem bezrazmernogo jenergeticheskogo kriterija [Evaluating the effectiveness of the treatment of the blade using the dimensionless energy criterion] // STIN, 2004, № 12.– P. 23-26.
  2. Karpov A.V. K voprosu snizhenija jenergojomkosti tehnologicheskih processov obrabotki rezaniem [On the issue of reducing energy intensity of technological cesses machining] // Sovremennye problemy nauki i obrazovanija [Modern problems of science and education], 2013, № 2; URL: http://www.science-education.ru/108-8697.
  3. Karpov A.V. K voprosu upravlenija processom rezanija na osnove jenergeticheskih zakonomernostej deformacii i razrushenija tvjordyh tel [To the question of management of cutting process on the basis of power laws of deformation and destruction of solid materials] // Mashinostroenie i bezopasnost’ zhiznedejatel’nosti [Engineering industry and life safety], 2011, № 1. – P. 37-49.
  4. Karpov A.V. Optimizacija processov obrabotki rezaniem na osnove jenergeticheskih zakonomernostej deformacii i razrushenija materialov [Optimization of сutting processes on the basis of the energy patterns of materials deformation and fracture] // Mashinostroenie i bezopasnost’ zhiznedejatel’nosti [Engineering industry and life safety], 2012, № 1. – P. 58-64.
  5. Karpov A.V. Jenergeticheski jekonomichnye rezhimy rezanija [Energy-saving modes of cutting] // Mashinostroenie i bezopasnost’ zhiznedejatel’nosti [Engineering industry and life safety], 2008, № 5. – P. 138-144.
  6. Starkov V.K. Fizika i optimizacija rezanija materialov [Physics and optimization of cutting materials]. – Moscow: Mashinostroenie, 2009.– 640 p.
  7. Jakubov F.J. Jenergeticheskie sootnoshenija processa mehanicheskoj obrabotki materialov [Energy ratios machining process materials]. – Tashkent: Fan, 1985.– 105 p.

«Engineering industry and life safety» №2 (20), 2014. Pages: 61-68

Download full text:Karpov A.V. Revisiting power efficiency estimation of technological processes of cutting

View russian version


Karpov Aleksey Vladimirovich – Ph.D., Murom Institute of Vladimir State University, Murom, Russia. E-mail: krash75@mail.ru

20
Jul

Eliseev S.V., Trofimov A.N., Bolshakov R.S. Machine vibrations and dynamics: design schemes, structures and mathematical models. Part I

Machine vibrations and dynamics: design schemes, structures and mathematical models. Part I

Eliseev S.V., Trofimov A.N., Bolshakov R.S.

Some of the methodological conditions of mathematical models in tasks of machines dynamics are discussed. Is shown that at all complexity of technical objects their formalized models in engineering practice often are considered abreast of systems with relatively of small number of degrees of freedom. Review of the methods in the estimation of properties of mechanical oscillation systems which are widely used as a design schemes of different technical objects, allows more clearly to determine the generalized representations about dynamical processes which are implemented in system with feedback ties. Technology of system consideration of tasks of constructions of mathematical models in form structure schemes equivalent in dynamical relation of automation control systems are offered. Directions of development of methods and means to ensuring the vibration protection objects are identified that associated with the expansion of the basic concepts of automation control theory. In first part is shown that design schemes of objects of transport dynamics at complication of technical objects begin to represent more advanced forms of dynamical interactions which creature new ties. Such ties is implemented as special constructional elements in form levers of different types, intermediate devices and large fragment of system.

Keywords: structure models of vibration protection systems, the extension of a typical elements set, structure transfor-mations, movement transformation devices, lever connections and mechanisms.

References

  1. Makhutov N.А. Sovremennye tendencii razvitija nauchnyh issledovanij po problemam mashinovedenija i mashinostroenija [Modern tendencies of devolop of scientifical research on engineering and mechanical engineering] / N.А. Makhutov, V.P. Petrov, V.I. Kuksova, G.V. Moslvitin // Problems engineering and automatization, 2008, №3. – p. 3-19.
  2. Dinamicheskie vzaimodejstvija jele-mentov mashin: raschetnye shemy i matematicheskie modeli vibracionnyh sostojanij [Dynamical interactions of machines elements: design schemes and mathematical models of vibration conditions] / Eliseev S.V., Artyunin А.I., Logunov А.S., Nasnikov D.N., Bolshakov R.S., Kaimov Е.V., Mironov А.S., Parshuta Е.A.; Irkutsk state Transport university – Irkutsk, 2013. – 319 p. – Bibliog.: 178 names. – Rus. – Dep. in VINITI 08.11.13 № 313 – V 2013.
  3. Eliseev S.V., Reznik Y.N., Khomenko А.P. Mehatronnye podhody v dinamike mehanicheskih kolebatel’nyh sistem [Mechatronics approaches in dynamics of mechanical oscillation systems]. – Novosibirsk: Science, 2011. – 394 p.
  4. Belokobilskii S.V., Eliseev S.V., Kashuba V.B. Prikladnye zadachi strukturnoj teorii vibrozashhitnyh sistem [Applied tasks of structural theory of vibroprotection sytems].– SPb: Politechnika, 2013. – 374 p.
  5. Eliseev S.V. Koncepcija obratnoj svjazi v dinamike mehanicheskih sistem i dinamicheskoe gashenie kolebanij [Concept of feedback tie in dynamics of mechanical oscillation systems and dynamical absorbtion of oscillations] [Internet resource] / S.V. Eliseev, А.N. Trofimov, R.S. Bolshakov, А.А. Sаvchеnко // technomag.edu.ru: Science and education: internet science technical edition. #5. 2012. URL. http:// technomag.edu.ru/doc/378353. html (data of treatment: 10.05.2012).
  6. Belokobilskii S.V., Eliseev S.V., Sitov I.S. Dinamika mehanicheskih sistem. Rychazhnye i inercionno-uprugie svjazi [Dynamics of mechanical systems. Lever and inertial elastical ties]. – SPb: Politechnika, 2013. – 324 p.
  7. Dinamika mehanicheskih kolebatel’nyh sistem: strukturnye analogii, mehanicheskie cepi [Dynamics of mechanical oscillation systems: structural analogies, mechanical chains] / Eliseev S.V., Moskovskikh А.О., Kaimov Е.V.; Irkutsk state Transport university.– Irkutsk, 2013. – 116 p. – Bibliog.: 101 names – Rus.– Dep. in VINITI 23.12.2013 № 378 V-2013.
  8. Emelianov S.V., Korovin S.K. Novye tipy obratnoj svjazi: upravlenie pri neopredelennosti [New types of feedback tie: control at uncertainty]. – Мoscow: Science. Phismathlit, 1997. – 352 p.
  9. Eliseev S.V. Vozmozhnosti integracii metodov teorii cepej i teorii avtomaticheskogo upravle-nija v zadachah dinamiki mashin [Possibilities of integration of methods of theory of chains and automation control theory in tasks of machines dynamics] / S.V. Eliseev, А.О. Moskovskikh, R.S. Bolshakov, А.А. Sаvchеnко // technomag.edu.ru: Science and education: internet science technical edition. #6. 2012. URL. http:// technomag.edu.ru/doc/378699. html.
  10. Kiryukhin А.V. Aktivnaja vibrozashhita – naznachenie, principy, sostojanie. Aktivnaja vibrozashhita i shumoizoljacija truboprovodov i jeksperimental’nye issledovanija [Active vibroprotection – function, principles, condition. Active vibroprotection and noise insulation of pipeline and experimental research] / А.V. Kiryukhin, V.А. Tikhonov, А.G. Chistiakov, V.V. Iablonskii // Problems engineering and automatization, 2012,№4. – p. 102-110.
  11. Khomenko А.P., Eliseev S.V., Ermoshenko Y.V. Sistemnyj analiz i matematic-heskoe modelirovanie v mehatronike vibroza-shhitnyh sistem [System analysis and mathema-tical modeling in mechatronics of vibroprotection systems]. – Irkutsk: IrSTU, 2012. – 288 p.
  12. Khokhlov А.А. Dinamika slozhnyh mehanicheskih sistem [Dynamics of complicated mechanical systems]. – Мoscow: MIIT, 2002. –172 p.
  13. Khomenko А.P. Dinamika i upravlenie v zadachah vibrozashhity i vibroizoljacii podvizhnyh ob#ektov [Dynamics and control in tasks of vibroprotection and vibroisolation of mobile objects]. – Irkutsk: ISU, 2000. – 293 p.
  14. Sovremennye problemy dinamiki mashin. Zashhita ot vibracij i udarov [Modern problems of machines dynamics. Protection from vibrations and shocks] / Eliseev S.V., Khomenko А.P., Barsukov S.V. Irkutsk state Transport university – Irkutsk, 2011. – 460 p. – Bibliog.: 23 names. – Rus. – Dep. in VINITI 21.03.11 № 135 – V 2011.
  15. Varguninin V.N. Konstruirovanie i raschet rychazhno-sharnirnyh sredstv i agregatov [Construction and calculation of lever-articulated vehicles and aggregates] / V.N. Varguninin, V.N. Gusarov, B.G. Ivanov, А.S. Levchenko [and others]; edited О.P. Mulyukin. – Samara: SamGUps, 2006. – 86 p.
  16. Ivanov B.G. Razrabotka metodov rascheta dinamiki i prochnosti agregatov transportnoj tehniki s rychazhno-sharnirnymi svjazjami [Develop of methods of accounting of dynamics and strength of aggregatesР of transport technics with lever-articulated ties]: avtoref. diss. doct. tech. sc. – Samara, 2007. – 48 p.
  17. Lavrus V.V. Sovershenstvovanie pnevmaticheskih rychazhno-sharnirnyh sistem zheleznodorozh-nogo transporta [Improvement of pneumatic lever-articulated systems of railway transport]: avtoref. diss. doct. tech. sc. / V.V. Lavrus. – Orel, 2006. – 20 p.
  18. Eliseev S.V., Kashuba V.B., Ermoshenko Y.V. Rychazhnye svjazi v zadachah dinamiki transportnoj podveski [Lever ties in tasks of dynamics of transport of suspension]// Systems. Methods. Technologies, 2011,№9. – p. 24-31.
  19. Rychazhnye svjazi v zadachah dinamiki mehanicheskih kolebatel’nyh sistem. Teoreticheskie aspekty [Lever ties in tasks of dynamics of mechanical oscilation systems. Theoretical aspects] / Eliseev S.V., Belokobilskii S.V., Upir R.Y., Gozbenko V.Е. Irkutsk state Transport university – Irkutsk, 2011. – 158 p. – Bibliog.: 15 names. – Rus. – Dep. in VINITI 27.11.09 № 737 – V 2009.
  20. Eliseev S.V., Upir R.Y., Logunov А.S. Rychazhnye svjazi v dvumernyh mehanicheskih sistemah [Lever ties in two-dimensional mechanical systems] / Dg. of science of proceedings. Serie mechanical engineering, constructing. – Poltava, 2009. – p. 90-98.
  21. Mehanizmy v uprugih kolebatel’nyh sistemah: osobennosti ucheta dinamicheskih svojstv, zadachi vibracionnoj zashhity mashin, priborov i oborudovanija [Mechanisms in elastic oscillation systems: features of accounting of deynamical properties, tasks of vibraion protection of machines, devices and apparatus] / Khomenko А.P., Eliseev S.V., Artyunin А.I., Parshuta Е.А., Kaimov Е.V.; Irkutsk state Transport university – Irkutsk, 2013. – 187 p. – Bibliog.: 20 names. – Rus. – Dep. in VINITI 15.08.13 № 243 – V 2013.

«Engineering industry and life safety» №2 (20), 2014. Pages: 48-60

Download full text:Eliseev S.V., Trofimov A.N., Bolshakov R.S. Machine vibrations and dynamics: design schemes, structures and mathematical models. Part I

View russian version


Eliseev Sergey Viktorovich – Professor, Irkutsk State University of Railway Transport. E-mail: eliseev_s@inbox.ru

Trofimov Andrey Narjevich – PhD, Irkutsk State University of Railway Transport. E-mail: trofimov_an@irgups.ru

Bolshakov Roman Sergeevich – Junior Researcher, Irkutsk State University of Railway Transport. E-mail: bolshakov_rs@mail.ru

20
Jul

Vasylkiv V.V. The application of air plasma cutting process for manufacturing screw and auger blanks

The application of air plasma cutting process for manufacturing screw and auger blanks

Vasylkiv V.V.

In the technological route structure of manufacturing screw parts the formation of screw and auger blanks is considered to be the most critical and complicated stage. For the first time, an effective technique to manufacture these blanks in order-, serial- and mass production has become possible when using air plasma cutting process along the helix of thick-walled pipes and single hollow blanks. Applying this technique, metal and polymer screw and auger blanks can be manufactured, which were difficult to process by pressing and cutting. The provisions for the efficient use of the new technology are considered. The technical solutions under discussion make it possible to manufacture a number of screw blanks, including working parts of screw mixers, separators, presses, shredders, centrifuges, screw conveyors, screw broaches, cutters, screw piles, anchors, drills, screw pump rotors, screw plows, etc.

Keywords: screw flights, screw blanks, screw part, air plasma cutting.

References

  1. Tehnologicheskie osnovy formoobrazovanija raznoprofil’nyh vintovyh zagotovok: monografija [Technological bases forming of multi-profile screw blanks: monograph] / B. Gevko, M. Pylypets, V. Vasylkiv, D. Radyk. – Ternopil: Publishing House Ternopil State Ivan Pul’uj Technical University, 2009. – 457 p.
  2. Pylypets M., Vasylkiv V. Proektirovanie sekcionnyh vintovyh zagotovok: monografija [Designing sectional screw flights: monograph]. – Ternopil: Publishing House Ternopil Ivan Pul’ujNational Technical University, 2013. – 180 p.
  3. Kiselev U.Y. Oborudovanie plazmennodugovoj rezki metallov [Equipment plasma arc-cutting]. – Kishinev, 2005. – 56 p.

«Engineering industry and life safety» №2 (20), 2014. Pages: 39-47

Download full text:Vasylkiv V.V. The application of air plasma cutting process for manufacturing screw and auger blanks

View russian version


Vasylkiv Vasyl Vasyljevich – Ph.D., Ternopil Ivan Pul’uj National Technical University, E-mail: Vasylkivv@gmail.com

20
Jul

Sharapov R.V. Organization of automatic surface waters observation

Organization of automatic surface waters observation

Sharapov R.V.

The paper deals with the organization of surface waters observation systems. The analysis of equipment intended for automatic data collecting without human interference is performed. Standalone recorders (loggers) for logging temperature, surface water level and salinity are tested. Performance characteristics of Solinst Model 3001 Levelogger Edge, Solinst Model 3001 Levelogger Junior, Solinst Model 3001 LTC Levelogger Junior are given. The data collector for receiving data from loggers is presented. The plan to implement a wireless system sending data from the standalone recording device to a processing centre is considered. Using this approach, it is possible to deploy a surface water observation network over a large area and collect data online. The high sensor reaction rate may help monitor the status change at the frequency ranging from a second fraction to 99 hours. This gives new opportunities for hydrosphere surface research.

Keywords: monitoring, rivers, surface water, pollution, water, equipment, sensors.

References

  1. Sharapov R.V. Perehod ot tehnicheskih k prirodno-tehnicheskim sistemam [The transition from the technical to the natural-technical systems]// Mashinostroenie i bezopasnost’ zhiznedejatel’nosti [Engineering industry and life safety], 2012, № 2. – P.43-46.
  2. Solovjev L.P., Bulkin V.V., Sharapov R.V. Sushhestvovanie cheloveka v ramkah tehnosfery [The existence of man in the technosphere] // Mashinostroenie i bezopasnost’ zhiznedejatel’nosti [Engineering industry and life safety], 2012, № 1 (11). – P.31-39
  3. Solinst Canada Ltd http://www.solinst.com/
  4. Solinst Levelogger Series. Model 3001 Data Sheet http://www.solinst.com/products/data/3001.pdf
  5. Solinst Levelogger Junior Edge. Model 3001 Data Sheet http://www.solinst.com/products/data/3001junior.pdf
  6. Solinst LTC Levelogger Junior Model 3001 Data Sheethttp://www.solinst.com/products/data/3001ltc-junior.pdf
  7. Solinst Leveloader Gold. For Use with Model 3001 http://www.solinst.com/products/data/3001leveloadergold.pdf
  8. Solinst Telemetry Systems. Model 9100 and 9200 Gold Data Sheet http://www.solinst.com/products/data/9100.pdf
  9. Neptune’s R900® GPRS Gateway http://www.neptuneequipment.com/pdf/fixedbase/gateway.pdf
  10. Sharapov R.V. Lesnye pozhary 2010 goda i ih prichiny [Forest fires in 2010 and their causes]// Mashinostroenie i bezopasnost’ zhiznedejatel’nosti [Engineering industry and life safety], 2010, № 7. – P.68-71

«Engineering industry and life safety» №2 (20), 2014. Pages: 32-38

Download full text:Sharapov R.V. Organization of automatic surface waters observation

View russian version


Sharapov Ruslan Vladimirovich – Ph.D., Murom Institute of Vladimir State University, Murom, Russia. E-mail: info@vanta.ru

20
Jul

Sharapova E.V. The analysis of surface water pollution in Vladimir region

The analysis of surface water pollution in Vladimir region

Sharapova E.V.

The paper presents the analysis on surface water pollution in Vladimir region. The description of water bodies is given. About 120 million m3 of polluted water is annually discharged into the surface water. The analysis of gross pollutant discharges into surface water bodies is performed. The analysis shows a slight decrease in the amount of pollutants in the wastewater. But in spite of this fact, pollutant concentration in the surface waters is still high, and, as before, it requires certain decisions and activities towards better and more complete wastewater purification in Vladimir region. The list of major manufacturers involved in polluted wastewater discharge is given as well. The estimation of rivers pollution in Vladimir region and its time history analysis are presented. Nitrite nitrogen, copper, phenols, petrochemicals and iron are considered to be the main pollutants of major rivers in Vladimir region (the Oka River and the Klyazma River).

Keywords: rivers, surface water, pollution, waste water, water.

References

  1. Solovjev L.P., Bulkin V.V., Sharapov R.V.Sushhestvovanie cheloveka v ramkah tehnosfery [The existence of man in the technosphere]// Mashinostroenie i bezopasnost’ zhiznedejatel’nosti [Engineering industry and life safety], 2012, № 1. – P.31-39.
  2. Ezhegodnyj doklad o sostojanii okruzhajushhej sredy i zdorov’ja naselenija Vladimirskoj oblasti v 2012 godu [Annual report on the state of the environment and public health in the Vladimir region in 2012]. – Vladimir, 2012. – 106 p.

«Engineering industry and life safety» №2 (20), 2014. Pages: 28-31

Download full text:Sharapova E.V. The analysis of surface water pollution in Vladimir region

View russian version


Sharapova Ekaterina Viktorovna – teacher, Murom Institute of Vladimir State University, Murom, Russia. E-mail: sharapovamivlgu@gmail.com