Skip to content

Сообщения, помеченные ‘Eliseev S.V.’

3
Mar

Eliseev S.V., Trofimov A.N., Bolshakov R.S. Machine vibrations and dynamics: design schemes, structures and mathematical models. Part II

Machine vibrations and dynamics: design schemes, structures and mathematical models. Part II

Eliseev S.V., Trofimov A.N., Bolshakov R.S.

The paper considers the issues concerning the methodological basis for the tasks of designing mathematical models of dynamical processes in machines, equipment and apparatus interacting with the active external environment. Part I of the paper presents the generalization results of the current situation, as well as a number of statements about the future course of development in the context of vibration protection for technical facilities. The other part of the paper aims at figuring out a number of new definitions which arise in generalizing the methods of mathematical modeling for mechanical vibratory systems. A mathematical model can be represented by a structural analog of differential linear equations when considering dynamics tasks of technical facilities related to developing the ways   and means of vibration protection. Therefore, a mechanical vibratory system can be considered as an equivalent automation control system.
Keywords: mechanical vibratory systems, the ways and means of vibration protection, elemental links, structural schemes.

References

  1. Kolovskiy М.Z. Avtomaticheskoe upravlenie vibrozashhitnymi sistemami [Automation control of vibroprotection sytems]. – Мoscow, Science, 1976. – 320 p.
  2. Eliseev S.V., Reznik Y.N., Khomenko А.P. Mehatronnye podhody v dinamike mehanicheskih kolebatel’nyh sistem [Mechatronics approaches in dynamics of mechanical oscillation systems]. – Novosibirsk, Science, 2011. – 394 p
  3. ChuprakovY.I. Gidravlicheskie sistemy zashhity cheloveka-operatora ot obshhej vibracii [Hydraulic system of protection of the human operator of the total vibration]. – Мoscow, Mashinostroenie, 1987. – 224 p.
  4. Genkin M.D., ElezovV.G., JablonskiyV.V. Metody upravljaemoj vibrozashhity mashin [Methods of control vibroprotection of machines]. – Мoscow, Science, 1985. – 240 p.
  5. ChernouskoF.L. Upravlenie kolebanijami [Control of oscillations] / F.L. Chernousko, L.D. Akulenko, B.N. Sokolov. – Мoscow, Science, 1980. – 383 p.
  6. Eliseev S.V. Dinamika mehanicheskih sistem s dopolnitel’nymi svjazjami [Dynamics of mechanical systems with additional ties] / S.V. Eliseev, L.N. Volkov, V.P. Kukharenko. – Novosibirsk, Science, 1990. – 386 p.
  7. Mehanizmy v uprugih kolebatel’nyh sistemah: osobennosti ucheta dinamicheskih svojstv, zadachi vibracionnoj zashhity mashin, priborov i oborudovanija [Mechanisms in elastic oscillation systems: features of accounting of deynamical properties, tasks of vibraion protection of machines, devices and apparatus] / Khomenko А.P., Eliseev S.V., Artyunin А.I., Parshuta Е.А., Kaimov Е.V.; Irkutsk state Transport university – Irkutsk, 2013. – 187 p. – Bibliog.: 20 names. – Rus. – Dep. in VINITI 15.08.13 № 243 – V 2013.
  8. VeicV.L., Kachura А.Е., Martinenko А.М. Dinamicheskie raschety privodov mashin [Dynamical calculation of gears of machines]. – Leningrad, Mashinostroenie, 1971. – 352 p.
  9. Eliseev S.V., Drach М.А. Dopolnitel’nye svjazi v krutil’nyh kolebatel’nyh sistemah [Additional ties in torsional oscillation systems] // Vestnik Irkutskogo regional’nogo otdelenija AN Vysshej shkoly RF [Bulletin of Irkutsk regional department AS Higher school RF], 2006, №2. – P. 71-82.

«Engineering industry and life safety» №3 (21), 2014. Pages: 59-68

Download full text:Eliseev S.V., Trofimov A.N., Bolshakov R.S. Machine vibrations and dynamics: design schemes, structures and mathematical models. Part II

View russian version


Eliseev Sergey Viktorovich – Professor, Irkutsk State University of Railway Transport, Irkutsk, Russia. E-mail: eliseev_s@inbox.ru

Trofimov Andrey Narjevich – PhD, Irkutsk State University of Railway Transport, Irkutsk, Russia. E-mail: trofimov_an@irgups.ru

Bolshakov Roman Sergeevich – Junior Researcher, Irkutsk State University of Railway Transport, Irkutsk, Russia. E-mail: bolshakov_rs@mail.ru

20
Jul

Eliseev S.V., Trofimov A.N., Bolshakov R.S. Machine vibrations and dynamics: design schemes, structures and mathematical models. Part I

Machine vibrations and dynamics: design schemes, structures and mathematical models. Part I

Eliseev S.V., Trofimov A.N., Bolshakov R.S.

Some of the methodological conditions of mathematical models in tasks of machines dynamics are discussed. Is shown that at all complexity of technical objects their formalized models in engineering practice often are considered abreast of systems with relatively of small number of degrees of freedom. Review of the methods in the estimation of properties of mechanical oscillation systems which are widely used as a design schemes of different technical objects, allows more clearly to determine the generalized representations about dynamical processes which are implemented in system with feedback ties. Technology of system consideration of tasks of constructions of mathematical models in form structure schemes equivalent in dynamical relation of automation control systems are offered. Directions of development of methods and means to ensuring the vibration protection objects are identified that associated with the expansion of the basic concepts of automation control theory. In first part is shown that design schemes of objects of transport dynamics at complication of technical objects begin to represent more advanced forms of dynamical interactions which creature new ties. Such ties is implemented as special constructional elements in form levers of different types, intermediate devices and large fragment of system.

Keywords: structure models of vibration protection systems, the extension of a typical elements set, structure transfor-mations, movement transformation devices, lever connections and mechanisms.

References

  1. Makhutov N.А. Sovremennye tendencii razvitija nauchnyh issledovanij po problemam mashinovedenija i mashinostroenija [Modern tendencies of devolop of scientifical research on engineering and mechanical engineering] / N.А. Makhutov, V.P. Petrov, V.I. Kuksova, G.V. Moslvitin // Problems engineering and automatization, 2008, №3. – p. 3-19.
  2. Dinamicheskie vzaimodejstvija jele-mentov mashin: raschetnye shemy i matematicheskie modeli vibracionnyh sostojanij [Dynamical interactions of machines elements: design schemes and mathematical models of vibration conditions] / Eliseev S.V., Artyunin А.I., Logunov А.S., Nasnikov D.N., Bolshakov R.S., Kaimov Е.V., Mironov А.S., Parshuta Е.A.; Irkutsk state Transport university – Irkutsk, 2013. – 319 p. – Bibliog.: 178 names. – Rus. – Dep. in VINITI 08.11.13 № 313 – V 2013.
  3. Eliseev S.V., Reznik Y.N., Khomenko А.P. Mehatronnye podhody v dinamike mehanicheskih kolebatel’nyh sistem [Mechatronics approaches in dynamics of mechanical oscillation systems]. – Novosibirsk: Science, 2011. – 394 p.
  4. Belokobilskii S.V., Eliseev S.V., Kashuba V.B. Prikladnye zadachi strukturnoj teorii vibrozashhitnyh sistem [Applied tasks of structural theory of vibroprotection sytems].– SPb: Politechnika, 2013. – 374 p.
  5. Eliseev S.V. Koncepcija obratnoj svjazi v dinamike mehanicheskih sistem i dinamicheskoe gashenie kolebanij [Concept of feedback tie in dynamics of mechanical oscillation systems and dynamical absorbtion of oscillations] [Internet resource] / S.V. Eliseev, А.N. Trofimov, R.S. Bolshakov, А.А. Sаvchеnко // technomag.edu.ru: Science and education: internet science technical edition. #5. 2012. URL. http:// technomag.edu.ru/doc/378353. html (data of treatment: 10.05.2012).
  6. Belokobilskii S.V., Eliseev S.V., Sitov I.S. Dinamika mehanicheskih sistem. Rychazhnye i inercionno-uprugie svjazi [Dynamics of mechanical systems. Lever and inertial elastical ties]. – SPb: Politechnika, 2013. – 324 p.
  7. Dinamika mehanicheskih kolebatel’nyh sistem: strukturnye analogii, mehanicheskie cepi [Dynamics of mechanical oscillation systems: structural analogies, mechanical chains] / Eliseev S.V., Moskovskikh А.О., Kaimov Е.V.; Irkutsk state Transport university.– Irkutsk, 2013. – 116 p. – Bibliog.: 101 names – Rus.– Dep. in VINITI 23.12.2013 № 378 V-2013.
  8. Emelianov S.V., Korovin S.K. Novye tipy obratnoj svjazi: upravlenie pri neopredelennosti [New types of feedback tie: control at uncertainty]. – Мoscow: Science. Phismathlit, 1997. – 352 p.
  9. Eliseev S.V. Vozmozhnosti integracii metodov teorii cepej i teorii avtomaticheskogo upravle-nija v zadachah dinamiki mashin [Possibilities of integration of methods of theory of chains and automation control theory in tasks of machines dynamics] / S.V. Eliseev, А.О. Moskovskikh, R.S. Bolshakov, А.А. Sаvchеnко // technomag.edu.ru: Science and education: internet science technical edition. #6. 2012. URL. http:// technomag.edu.ru/doc/378699. html.
  10. Kiryukhin А.V. Aktivnaja vibrozashhita – naznachenie, principy, sostojanie. Aktivnaja vibrozashhita i shumoizoljacija truboprovodov i jeksperimental’nye issledovanija [Active vibroprotection – function, principles, condition. Active vibroprotection and noise insulation of pipeline and experimental research] / А.V. Kiryukhin, V.А. Tikhonov, А.G. Chistiakov, V.V. Iablonskii // Problems engineering and automatization, 2012,№4. – p. 102-110.
  11. Khomenko А.P., Eliseev S.V., Ermoshenko Y.V. Sistemnyj analiz i matematic-heskoe modelirovanie v mehatronike vibroza-shhitnyh sistem [System analysis and mathema-tical modeling in mechatronics of vibroprotection systems]. – Irkutsk: IrSTU, 2012. – 288 p.
  12. Khokhlov А.А. Dinamika slozhnyh mehanicheskih sistem [Dynamics of complicated mechanical systems]. – Мoscow: MIIT, 2002. –172 p.
  13. Khomenko А.P. Dinamika i upravlenie v zadachah vibrozashhity i vibroizoljacii podvizhnyh ob#ektov [Dynamics and control in tasks of vibroprotection and vibroisolation of mobile objects]. – Irkutsk: ISU, 2000. – 293 p.
  14. Sovremennye problemy dinamiki mashin. Zashhita ot vibracij i udarov [Modern problems of machines dynamics. Protection from vibrations and shocks] / Eliseev S.V., Khomenko А.P., Barsukov S.V. Irkutsk state Transport university – Irkutsk, 2011. – 460 p. – Bibliog.: 23 names. – Rus. – Dep. in VINITI 21.03.11 № 135 – V 2011.
  15. Varguninin V.N. Konstruirovanie i raschet rychazhno-sharnirnyh sredstv i agregatov [Construction and calculation of lever-articulated vehicles and aggregates] / V.N. Varguninin, V.N. Gusarov, B.G. Ivanov, А.S. Levchenko [and others]; edited О.P. Mulyukin. – Samara: SamGUps, 2006. – 86 p.
  16. Ivanov B.G. Razrabotka metodov rascheta dinamiki i prochnosti agregatov transportnoj tehniki s rychazhno-sharnirnymi svjazjami [Develop of methods of accounting of dynamics and strength of aggregatesР of transport technics with lever-articulated ties]: avtoref. diss. doct. tech. sc. – Samara, 2007. – 48 p.
  17. Lavrus V.V. Sovershenstvovanie pnevmaticheskih rychazhno-sharnirnyh sistem zheleznodorozh-nogo transporta [Improvement of pneumatic lever-articulated systems of railway transport]: avtoref. diss. doct. tech. sc. / V.V. Lavrus. – Orel, 2006. – 20 p.
  18. Eliseev S.V., Kashuba V.B., Ermoshenko Y.V. Rychazhnye svjazi v zadachah dinamiki transportnoj podveski [Lever ties in tasks of dynamics of transport of suspension]// Systems. Methods. Technologies, 2011,№9. – p. 24-31.
  19. Rychazhnye svjazi v zadachah dinamiki mehanicheskih kolebatel’nyh sistem. Teoreticheskie aspekty [Lever ties in tasks of dynamics of mechanical oscilation systems. Theoretical aspects] / Eliseev S.V., Belokobilskii S.V., Upir R.Y., Gozbenko V.Е. Irkutsk state Transport university – Irkutsk, 2011. – 158 p. – Bibliog.: 15 names. – Rus. – Dep. in VINITI 27.11.09 № 737 – V 2009.
  20. Eliseev S.V., Upir R.Y., Logunov А.S. Rychazhnye svjazi v dvumernyh mehanicheskih sistemah [Lever ties in two-dimensional mechanical systems] / Dg. of science of proceedings. Serie mechanical engineering, constructing. – Poltava, 2009. – p. 90-98.
  21. Mehanizmy v uprugih kolebatel’nyh sistemah: osobennosti ucheta dinamicheskih svojstv, zadachi vibracionnoj zashhity mashin, priborov i oborudovanija [Mechanisms in elastic oscillation systems: features of accounting of deynamical properties, tasks of vibraion protection of machines, devices and apparatus] / Khomenko А.P., Eliseev S.V., Artyunin А.I., Parshuta Е.А., Kaimov Е.V.; Irkutsk state Transport university – Irkutsk, 2013. – 187 p. – Bibliog.: 20 names. – Rus. – Dep. in VINITI 15.08.13 № 243 – V 2013.

«Engineering industry and life safety» №2 (20), 2014. Pages: 48-60

Download full text:Eliseev S.V., Trofimov A.N., Bolshakov R.S. Machine vibrations and dynamics: design schemes, structures and mathematical models. Part I

View russian version


Eliseev Sergey Viktorovich – Professor, Irkutsk State University of Railway Transport. E-mail: eliseev_s@inbox.ru

Trofimov Andrey Narjevich – PhD, Irkutsk State University of Railway Transport. E-mail: trofimov_an@irgups.ru

Bolshakov Roman Sergeevich – Junior Researcher, Irkutsk State University of Railway Transport. E-mail: bolshakov_rs@mail.ru

19
Jan

Eliseev S.V., Eliseev A.V., Kashuba V.B. Features of gap estimation in model problem of flipping particle with unilateral constraints

Features of gap estimation in model problem of flipping particle with unilateral constraints

Eliseev S.V., Eliseev A.V., Kashuba V.B.

The article presents the research results of mechanical systems with unilateral constraints. The model problem of flipping a particle on a horizontal surface with unilateral constraints under gravitation is considered. The re-search deals with the time and height of the particle reaching the surface in accordance with the surface frequency and vibration amplitude. The estimation of the gap between the material particle and the vibration surface is obtained. The paper presents analytical ratios of frequency and the surface vibration amplitude that provide a predetermined height or the reaching time of the material particle. A number of maximum flipping characteristics are given. The paper discusses restrictions on the mathematical model parameters, based on the surface physical characteristics and the ways to modify the original mathematical model. The methodological framework can be used in the research of continuous flipping mode, taking into consideration some additional constant force.

Keywords: unilateral constraints, the interaction of a particle with the vibrating surface, one-touch flipping mode, multiple flipping mode, the gap between particle and surface, flipping height, flipping time, the particle take-off.

References

  1. Loytsyanskiy L.G. The course of theoretical mechanics: in 2 vol. Vol. 2. Dynamics / Loytsyanskiy L.G., Lurie A.I. – Moscow: Nauka, 1968. – 638 p.
  2. Lurie A.I. Analytical Mechanics. – Moscow: Nauka, 1986. – 516 p.
  3. Artobolevskiy I.I. Theory of mechanisms and machines. – Moscow: Nauka, 1978. – 640 p.
  4. Blechman I.I., Dzhanalidze G.Y. Vibratory movement. – Moscow: Nauka, 1968. – 316 p.
  5. Selvinskiy V.V. The dynamics of the contact interaction of solids. – Blagoveshchensk: Publishing House of the Amur State University. 2009. – 164 p.
  6. Eliseev S.V., Markov K.K. Some aspects of the dynamics of the oscillatory process with unilateral constraints // Mechanics and Control. – Irkutsk: IPI, 1971. – P. 71-83.
  7. Eliseev S.V.,  Lotkin O.I.  The conditions of existence and loss of contact for systems with unilateral constraints // Proceedings of the OMIITa. Vol. 69. – Omsk OMIIT, 1966. – P. 93-99.
  8. Gorbikov S.P., Neumark Y.I. The main modes of motion in vibro-tossing // Math. Academy of Sciences of the USSR, Mechanics of Solids, № 4, 1981. – P. 39-50.
  9. Eliseev S.V., Eliseev A.V. Modes flip of a particle on a vibrating surface in the model problem with unilateral constraints // Modern technology. System analysis. Modeling. 2012, № 3 (35). – P. 64-75.
  10.  Serebrenitskiy P.P. General Technical Reference. – St. Petersburg: Polytechnic. 2004. – 445 p.

«Engineering industry and life safety» №1 (15), 2013. Pages: 50-56

Download full text:Eliseev S.V., Eliseev A.V., Kashuba V.B. Features of gap estimation in model problem of flipping particle with unilateral constraints

View russian version


Eliseev Sergey Viktorovich – Professor, Irkutsk State University of Railway Transport, Irkutsk, Russia. E-mail: eliseev_s@inbox.ru

Eliseev Andrey Vladimirovich – Graduate student, Irkutsk State University of Railway Engineering, Irkutsk, Russia. E-mail: andrey.marketer@gmail.com

Kashuba Vladimir Bogdanovich – Ph.D., Bratsk State University, Bratsk, Russia. E-mail: plemja@rambler.ru

18
Jan

Khomenko A.P., Eliseev S.V., Artyunin A.I. The issues of developing mathematical models of mechanical systems with dynamical absorbers through links coupling

The issues of developing mathematical models of mechanical systems with dynamical absorbers through links coupling

Khomenko A.P., Eliseev S.V., Artyunin A.I.

The paper deals with a general theory of lever dynamical vibration absorbers in mechanical systems intended to protect machinery and equipment from vibration and stresses. Desirable effects will be achieved by making proper couplings between the system links which results in reducing the number of freedom degrees of the system movement. Possibilities of using several systems of coordinates for describing the system dynamical properties depending on the element location and support are discussed. The paper considers the ways of eliminating some coordinates of relative movements provided they could be equal zero under specific conditions. Such approximations form link couplings and mechanisms in vibration system structure which can change the system dynamics. New means for controlling vibroprotection system dynamics could be developed. A number of examples are given based on mathematical modelling.

Keywords: vibroprotection systems, dynamical absorbers, lever mechanisms.

References

  1. Lee Min. Damping of resonance oscillations of gyroscopic systems active dynamic absorber // Abstract dis.  candidate. tehn. science – Moscow: MGTU, 2008. – 16 p.
  2. Eliseev S.V., Trofimov A.N., Bolshakov R.S., Savchenko A.A. The concept of feedback in the dynamics of mechanical systems and the dynamic vibration damping // Science and education, № 5, 2012. URL: http://technomag.edu.ru/doc/378353.html.
  3. Guskov A.M., Panovko G.Y., Chan-Van-Binh. Dynamics auto parametric oscillation damper (Part 1)  // Science and Education, № 2, 2008. URL: http://technomag.edu.ru/doc/ 80815.html.
  4. Khomenko, A.P., Eliseev S.V. Dynamic balancing of rotating shafts as a form of dynamic damping of mechanical systems // Modern technology. System analysis. Modeling, № 3 (35), 2012. – P. 8-17.
  5. Eliseev S.V., Lukyanov A.V., Reznik Yu.N., Khomenko A.P. Dynamics of mechanical systems with additional ties – Irkutsk: Irkutsk State University of Railway Engineering, 2006. – P. 316.
  6. Eliseev S.V., Belokobylskiy S.V. Generalized approaches to the construction of mathematical models of mechanical systems with L-shaped dynamic damper // System. Methods. Technology, 2011, № 9. – P. 9-23.
  7. Druzhinsky I.A. Mechanical chain. –Moscow: Mashinostroyenie. 1977. – 224 p.
  8. Babakov I.M. Theory of oscillations. –Moscow: Nauka, 1968. – 549 p.
  9. Loitsyanskiy L.G., Lurie A.I.The course of theoretical mechanics. Vol.2. Dynamics. – Moscow: Nauka, 1980. – 640 p.
  10. Eliseev S.V., Upir R.Y. Features of the dynamics of three-mass vibration isolation systems. The forms of self-organization of the movement // Bulletin IrGTU. Irkutsk, 2009, № 40. – P. 62-67.

«Engineering industry and life safety» №2 (16), 2013. Pages: 62-76

Download full text:Khomenko A.P., Eliseev S.V., Artyunin A.I. The issues of developing mathematical models of mechanical systems with dynamical absorbers through links coupling

View russian version


Khomenko Andrey Pavlovich – Professor, Irkutsk State University of Railway Transport, Irkutsk, Russia. E-mail: 190567@mail.ru

Eliseev Sergey Viktorovich – Professor, Irkutsk State University of Railway Transport, Irkutsk, Russia. E-mail: eliseev_s@inbox.ru

Artyunin Anatoliy Ivanovich – Professor, Irkutsk State University of Railway Transport, Irkutsk, Russia. E-mail: artyunin_ai@irgups.ru

28
Jan

Eliseev S.V., Artyunin A.I., Bolshakov R.S. Some questions of dynamics of interactions in mechanical systems with lever ties

Some questions of dynamics of interactions in mechanical systems with lever ties

Eliseev S.V., Artyunin A.I., Bolshakov R.S.

New approaches in formation of mathematical models of mechanical oscillation systems are considered. Is shown that general mathematical model in form of structural scheme of the equivalent in dynamical ratio of automatically control system. Models transformation permits to open for analysis dynamical interactions features between partial systems and type elemental part. Transformation structural schemes algorithms are offered which allow to secure calculation of lever ties which has rotation center in plane motion. And is shown that protection object is separated in oscillation system, remaining part of system can be curtailed in some structural “compact” which has features of generalized spring or dynamical elasticity.

Keywords: lever ties in dynamical systems, structural interpretations of mechanical systems, generalized tasks of vibroprotection and vibroisolation.

References

  1. Eliseev S.V., Khomenko A.P., Upir R.Y.  Lever communication problems vibratory effects on machinery and equipment // Modern technologies. Systems analysis. Modeling. – Irkutsk: IrGUPS, 2009, № 3 (23). – P. 104-119.
  2. Eliseev S.V., Khomenko A.P., Upir R.Y. Mechatronics vibroprotection systems with lever connections // Modern technologies. Systems analysis. Modelling, 2009, № 3 (23). – P. 104-119.
  3. Eliseev S.V., Belokobylsky S.V., Upir R.Y., Gozbenko V.E. Communication linkages in the dynamics of the mechanical vibration systems. Theoretical Aspects // Dep. in VINITI 27.11.09 № 737 in 2009 – Irkutsk: IrkutskStateUniversity of ways communication, 2009. – 159 p.
  4. Druzhinsky I.A. Mechanical chain – M: Mashinostroenie, 1977. – 234 p.
  5. Eliseev S.V., Resnick Y.N., Khomenko A.P, Zasyadko A.A. Dynamic synthesis of generalized problems in vibration protection and vibration control engineering objects – Irkutsk: Publishing House IrGUPS, 2008. – 523 p.
  6. Eliseev S.V., Resnick Y.N., Khomenko A.P. Mechatronic approach in the dynamics of mechanical vibrating systems. – Novosibirsk: Nauka, 2010. – 394 p.
  7. Eliseev S.V., Ermoshenko Y.V., Bolshakov R.S. Coordinate communication between the theory of vibration protection // techomag.edu.ru: Education & Science: e-science and technology edition, 2011, № 4. http://technomag.edu.ru/doc/177357.html.

«Engineering industry and life safety» №4 (14), 2012. Pages: 36-45

Download full text:Eliseev S.V., Artyunin A.I., Bolshakov R.S. Some questions of dynamics of interactions in mechanical systems with lever ties

View russian version


Eliseev Sergey Viktorovich – Professor, Irkutsk State University of Railway Engineering, Irkutsk, Russia. E-mail: eliseev_s@inbox.ru

Artyunin Anatoliy Ivanovich – Professor, Irkutsk State University of Railway Engineering, Irkutsk, Russia. E-mail: artyunin_ai@irgups.ru

Bolshakov Roman Sergeevich – Graduate student, Irkutsk State University of Railway Engineering, Irkutsk, Russia. E-mail: bolshakov_rs@mail.ru

21
Jan

Eliseev S.V., Sitov I.S., Eliseev A.V. Motion of material particle with tossing in model problem with «not holding» ties

Motion of material particle with tossing in model problem with «not holding» ties

Eliseev S.V., Sitov I.S., Eliseev A.V.

The purpose of this work is to establish research methods mechanical systems with «not holding» ties. The problems of determining the mode of continuous flying up of a material particle from surface oscillations with the force of gravity are considered. The graphical-analytical method for determination of the mode parameters is realized. The analytical characteristics of the relations between the basic modes of continuous flying up of a particle as a function of the parameters of the surface vibrations are identified. The proposed methodological framework can be used to research the mode of continuous flipping with additional constant force which operate from the external environment in free flight phase.

Keywords: not holding ties, interaction of a material particle with a vibrating surface, a mode of a material particle tossing with one contact.

References

  1. Loitsyansky L.G. Course of Theoretical Mechanics. Vol. 2. Dynamics / L.G. Loitsyansky, A.I. Lurie. – Moscow: Nauka. 1968. – 638 p.
  2. Lurie A.I. Analytical Mechanics / A.I. Lurie. – M: Nauka. 1986. – 516 p.
  3. Artobolevsky I.I. Theory of mechanisms and machines – M: Nauka. 1978. – 640 p.
  4. Blekhman I.I., Dzhanalidze G.Y. Vibrational displacement. – M: Nauka. 1968. -316 p.
  5. Selvinsky V.V. The dynamics of the contact interaction of solids. – Blagoveshchensk: Publishing House of Amur of public university, 2009. – 164 p.
  6. Eliseev S.V., Markov K.K. Some aspects of the dynamics-rye oscillatory process with unilateral constraints // Mechanics and Control. – Irkutsk: IPI, 1971. – P. 71-83.
  7. Eliseev S.V., Lotkin O.I. Conditions of existence and breach of contact for systems with unilateral constraints // Proceedings OMIIT. – Omsk: OMIIT, 1966, Vol. 69. – P. 93-99.
  8. Gorbikov S.P., Neimark Y.I. The major modes of motion in vibro tossing // Math. USSR “Mechanics of rigid body”, 1981, № 4. – P. 39-50.
  9. Eliseev S.V., Eliseev A.V. Modes flip of a particle on a vibrating surface in the model problem with unilateral constraints. // Modern technologies. Systems analysis. Modeling, 2012, № 3 (35). – P. 64-75.

«Engineering industry and life safety» №3 (13), 2012. Pages: 53-58

Download full text:Eliseev S.V., Sitov I.S., Eliseev A.V. Motion of material  particle with tossing in model problem with «not holding» ties

View russian version


Eliseev Sergey Viktorovich – Professor, Irkutsk State University of Railway Transport, Irkutsk, Russia. E-mail: eliseev_s@inbox.ru

Sitov Ilya Sergeevich – Docent, Bratsk State University, Irkutsk, Russia. E-mail: sitov@yandex.ru

Eliseev Andrey Vladimirovich – Student, Irkutsk State University of Railway Engineering, Irkutsk, Russia. E-mail: andrey.marketer@gmail.com

21
Jan

Eliseev S.V., Kashuba V.B., Bolshakov R.S. Possible influence of external factors on the reduced stiffness of the system

Possible influence of external factors on the reduced stiffness of the system

Eliseev S.V., Kashuba V.B., Bolshakov R.S.

Approach of change of dynamical condition of vibroprotection systems through introduction of additional connection force influence are considered. Such approach accordances to form of automatical control by force of influence. Key moment in formation of offering method is presence two (at least) external influences in relation which are supposed installation possibility of function tie. Usually form of tie are considered in the form constant coefficient between amplitude meaning of external influences. Sign of coefficient is taken into account. Change coerced rigidities possibilities are shown that is change her parameters at different coefficients of tie. Influence processes on state ties of systems related to change frequencies own oscillations possibilities, dynamical absorbtion regimes and other.

Keywords: vibroprotection system, control to the influence, dynamical absorbtion of oscillations.

References

  1. Eliseev S.V., Nerubenko G.P. Dynamic damper. – Novosibirsk: Nauka, 1982. – 182 p.
  2. Eliseev S.V., Kashuba V.B., Ermoshenko Y.V. Communication linkages in the dynamics of the transport suspension // Systems. Methods. Technology, 2011. № 9. – P. 24-31.
  3. Eliseev S.V., Trofimov  A.N., Bolshakov R.S., Savchenko A.A. The concept of feedback in the dynamics of mechanical systems and the dynamic vibration damping // techomag.edu.ru: Education & Science: e-science and technology edition, 2012, №5. URL. http://technomag.edu.ru /doc/378353.html.
  4. Kashuba V.B., Belokobylsky S.V. Generalized theory of dynamic damper technology machines // Processing of the V International Conference “Problems of modern machines.” – Ulan-Ude. 2012, Vol. 2 – P. 204-214.
  5. Eliseev S.V., Lonzih P.A. Effect of controlling force in the structure of external disturbances // Bulletin of the Irkutsk State Technical University – Irkutsk, 2011, №. 4 (51). – P. 26-33.
  6. Eliseev S.V., Resnick Y.N., Khomenko A.P. Mechatronic approach in the dynamics of mechanical vibrating systems. – Novosibirsk: Nauka. 2010. – 430 p.

«Engineering industry and life safety» №3 (13), 2012. Pages: 46-52

Download full text:Eliseev S.V., Kashuba V.B., Bolshakov R.S. Possible influence of external factors on the reduced stiffness of the system

View russian version


Eliseev Sergey Viktorovich – Professor, Irkutsk State University of Railway Transport, Irkutsk, Russia. E-mail: eliseev_s@inbox.ru

Kashuba Vladimir Bogdanovich – Ph.D., Director of Technopark Bratsk State University, Irkutsk, Russia. E-mail: plemja@rambler.ru

Bolshakov Roman Sergeevich – graduate student, Irkutsk State University of Railway Engineering, Irkutsk, Russia. E-mail: bolshakov_rs@mail.ru