Romanov R.V., Kuzichkin O.R. Application of geo-electric sounding methods for geo-environmental water monitoring in decentralized local water supply systems
Application of geo-electric sounding methods for geo-environmental water monitoring in decentralized local water supply systems
Romanov R.V., Kuzichkin O.R.
Nowadays, monitoring and assessment of drinking water quality is one of the major issues in providing and maintaining ecological safety in cities and settlements. It is especially important in settlements and areas where water supply systems are not centralized. The purpose of this work is to use geo-electrical monitoring multifrequency methods intended to inspect both surface and underground waters in local geo-environmental monitoring of decentralized water supply systems. The basic geo-electric model in points of geo-environmental water monitoring is chosen. Mineralization and electrical conductivity vary over a wide range therefore it is advisable to use a multilayered model of a geological section. The rule of thumb, it is a two-layer conducting semi-space model, which describes well the monitoring process of the top aquifer. To monitor the parameters of the top aquifers, a multifrequency vertical electrical sounding (MFVES) method is chosen.
Keywords: decentralized water supply systems, environmental monitoring, geo-electric methods, groundwater.
References
- Korolev V.A. Monitoring geologicheskoj sredy [Monitoring of the geological environment]. – Moscow: MGU, 1995.
- SanPiN 2.1.4.544-96. Trebovanija k kachestvu vody necentralizovannogo vodosnabzhenija [Requirements for Water quality of Uncentralized Sourses of Water Supply].
- Konstantinov I.S., Kuzichkin O.R. Organizacija sistem avtomatizirovannogo kontrolja geodinamicheskih ob#ektov [Organization of automated control ge-odynamic objects] // Informacionnye sistemy i tehnologii [Information Systems and Technology], 2008, № 4-3/272 (550). – P.9-13.
- Orekhov A.A. Dorofeev N.V. Sistema dlja jekologicheskogo monitoringa vodnyh ob#ektov na baze metoda geojelektricheskogo kontrolja [The system for ecological monitoring water objects based on the method of geoelectrical controls] // Mashinostroenie i bezopasnost’ zhiznedejatel’nosti [Engineering and life safety], №2, 2012. – P.36-38.
- Jakubowski J.V., Renard I.V. Jelektrorazvedka [Electromagnetics] 3rd edition. – Moscow: Nedra, 1991. – 358 p.
- Dmitriev V.I. Vychislitel’naja matematika i tehnika v razvedochnoj geofizike. Spravochnik geofizika [Computational Mathematics and Technology in exploration geophysics. Directory of geophysics] – Moscow: Nedra, 1990.
- Kuzichkin O.R. Algoritmy obrabotki dannyh v mnogopoljusnyh jelektrolokacionnyh sistemah [Data processing algorithms in the multi-polar electro radar systems] // Radiotehnika [Radio Engineering], 2007, №6. – P.60-63.
- Kuzichkin O.R. Algoritm formirovanija prognoznyh geodinamicheskih ocenok pri geojelektricheskom monitoringe suffozionnyh processov [The algorithm for generating the forecast estimates for geodynamic geoelectric monitoring suffusion processes] // Pribory i sistemy. Upravlenie, kontrol’ i diagnostika [Devices and systems. Management, monitoring and diagnostics], 2008, №5. – P.50-54.
«Engineering industry and life safety» №3 (21), 2014. Pages: 35-38
Romanov Roman Vyacheslavovich – Graduate student, Murom Institute of Vladimir State University, Murom, Russia.E-mail: romanov.roman.5@yandex.ru
Kuzichkin Oleg Rudolfovich – Prefessor, Murom Institute of Vladimir State University, Murom, Russia. E-mail: electron@mivlgu.ru
Dorofeev N.V., Romanov R.V. Karst processes in obtaining prediction assessments of geo-environment alterations
Karst processes in obtaining prediction assessments of geo-environment alterations
Dorofeev N.V., Romanov R.V.
Nowadays, anthropogenic impact on the ground is increasing at a faster rate. In addition, the areas featuring higher geodynamics and complex hydrological environment, suffer from the negative effects of near-surface processes and, as a result, the geological environment alteration increases dramatically. One of the near-surface processes is karst-suffusion, whose monitoring and predicting are an urgent task at the moment. Therefore, to improve the accuracy of prediction assessments of alteration in the geological environment and prediction time, it is necessary to determine the factors affecting the development of karstification processes, which is the purpose of this work. The paper presents four main factors of karstification and provides interrelation between the intensification of karst-suffusion processes in Dzerzhinsk area and the water level in the Oka river.
Keywords: geoelectric monitoring, geodynamic object, karst, karst processes, karst-suffusion processes.
References
- Aderhold G. Klassifikation von erdfallen und senkungsmulden in karstgefahrdeten gebieten hessens. Empfehlungen zur Abschatzung des geotechnischen Risikos bei Baumassnahmen // HLUG – Hessesches Landesamt fur Umwelt und Geologie. Geologische Abhandlungen Hessen, Band 115, Wiesbaden 2015.
- Instanes А. // Arctic Climate Impact Assessment – Scientific Report, 2006, chapter 16.
- Orekhov A.A., Dorofeev N.V. Algoritm korrekcii vlijanija gidrologicheskoj pomehi na kontrol’ geodinamicheskih ob#ektov [Algorithm for correcting the effect of hydrological disturbance on the geodynamic control objects] // Algoritmy, metody i sistemy obrabotki dannyh [Algorithms, methods, and data processing system], 2012, vol. 4 (22). – 74-78 p.
- Orekhov A.A., Dorofeev N.V. Geojelektricheskoe modelirovanie pripoverhnostnyh geodinamicheskih ob#ektov s uchjotom vozdejstvija jendogennyh faktorov [Geoelectric modeling of geodynamic subsurface objects, taking into account the impact of endogenous factors] // Algoritmy, metody i sistemy obrabotki dannyh [Algorithms, methods, and data processing system], 2014, vol. 1 (26). – 32-40 p.
- Orekhov A.A., Dorofeev N.V. Informacionno-izmeritel’naja sistema dlja provedenija geojelektricheskogo kontrolja geodinamicheskih ob#ektov [Information-measuring system for the geoelectric monitoring of geodynamic objects] // Radiotehnicheskie i telekommunikacionnye sistemy [Radio Engineering and Telecommunication Systems], 2012, №2. – P. 60-62.
- Orekhov A.A., Dorofeev N.V. Geojelektricheskoe modelirovanie podzemnyh vodnyh ob#ektov [Geoelectric modeling underground water objects] // Mashinostroenie i bezopasnost’ zhiznedejatel’nosti [Engineering industry and life safety], 2012, № 4. – P. 16-19.
- Kuzichkin O.R. Algoritm formirovanija prognoznyh geodinamicheskih ocenok pri geojelektricheskom monitoringe suffozionnyh processov [The algorithm for generating the forecast estimates for geodynamic geoelectric monitoring suffusion processes] // Pribory i sistemy. Upravlenie, kontrol’, diagnostika [Devices and systems. Management, monitoring, diagnostics], 2008, №5. – P. 50-53.
«Engineering industry and life safety» №3 (21), 2014. Pages: 24-27
Dorofeev Nikolay Viktorovich – Ph.D., Murom Institute of Vladimir State University, Murom, Russia.E-mail: DorofeevNV@yandex.ru
Romanov Roman Vyacheslavovich – Graduate student, Murom Institute of Vladimir State University, Murom, Russia.E-mail: romanov.roman.5@yandex.ru
Romanov R.V., Dorofeev N.V. The application of geophysical methods for karst localization process
The application of geophysical methods for karst localization process
Romanov R.V., Dorofeev N.V.
Protection of national economic projects from possible effects of catastrophes as well as the geological environment control in the operation of industrial facilities involves geodynamic objects monitoring. The paper deals with the identification of karst geodynamic objects by means of geophysical methods. Resistance method is chosen as the main one. The method has some modifications such as the electric profiling and the electric sounding. The modification choice depends on the tasks, areas and conditions under sounding. The paper also deals with the physical basis of the resistance method and initial results obtained by electrical profiling and electric sounding. The nature of the relationship between the apparent resistivity and the geological section structure is illustrated in graphs. The electrical sounding curves type dependence on the parameters ratio of geoelectric section layers is determined.
Keywords: electric sounding, karst process, geoelectric section, geodynamic object.
References
- Kuzichkin O.R. Programmno-apparatnaja organizacija jelektrolokacionnyh sistem pri geomonitoringe karsta [Hardware and software electro location systems at geomonitoring karst] // Proektirovanie i tehnologija jelektronnyh sredstv [Design and technology of electronic means], 2006, vol. 4. – P 54-58.
- Lisitcin V.V. Rekomendacii po geofizicheskomu issledovaniju zakarstovannosti territorij, prednaznachennyh dlja stroitel’stva [Recommendations of geophysics research of karst areas designated for construction]. – Moscow, 1971.
- Dobrokhotova I.A., K.V. Novikov Jelektrorazvedka. Uchebnoe posobie [Electromagnetics. Textbook]. – Moscow, SGU, 2009. – 55 p.
- Orekhov A.A., Dorofeev N.V. Organizacionnaja struktura geojekologicheskogo monitoringa geodinamicheskih ob#ektov [The organizational structure of geoecological monitoring of geodynamic objects] // Tehnologii tehnosfernoj bezopasnosti [Technology of Technosphere Security], 2012, № 4 (44). – P. 1-4.
«Engineering industry and life safety» №1 (19), 2014. Pages: 59-63
Romanov Roman Vyacheslavovich – Graduate student, Murom Institute of Vladimir State Uni-versity, Murom, Russia. E-mail: romanov.roman.5@yandex.ru
Dorofeev Nikolay Viktorovich – Ph.D., Murom Institute of Vladimir State University, Murom, Russia. E-mail: DorofeevNV@yandex.ru
Dorofeev N.V., Orekhov A.A., Romanov R.V. Effectiveness evaluation of automated environmental groundwater monitoring system
Effectiveness evaluation of automated environmental groundwater monitoring systemal
Dorofeev N.V., Orekhov A.A., Romanov R.V.
The paper presents the effectiveness dependence of the long-term automated environmental groundwater monitoring system, based on the aeration zone geoelectric monitoring method as well as on the number of contactless transformer sensors and the distance between them. The equipment costs and the area occupied by the system are considered as well. The basic criteria for evaluating the automated control and monitoring system effectiveness are described. The choice of the statistical criterion for evaluating the effectiveness of similar systems as a basic one is reasoned. According to the results, the optimum number of contactless transformer sensors in the environmental groundwater monitoring system is determined to come at eight. The optimal distance between the sensors is specified as 30 meters. In accordance with these parameters, the system efficiency formula is found. The efficiency calculation was carried out for the multi-electrode setup.
Keywords: groundwater monitoring system, monitoring system, geo-ecology, geo-ecological monitoring, unsaturated zone.
References
- Orekhov A.A., Dorofeev N.V. Information-measuring system for monitoring geodynamic geoelectric objects // Radio Engineering and Telecommunication Systems, 2012, № 2. – P. 60-62.
- Orekhov A.A., Dorofeev N.V. Algorithm for correcting the influence of interference on the hydrological monitoring geodynamic objects // Algorithms, methods and data processing systems, 2012, № 22. – P. 74-78.
- Dorofeev N.V.,Orekhov A.A. Increase the efficiency of the geodynamic control through the introduction of new geoelectric models // Engineering industry and life safety, 2012, № 3. – P. 11-14.
- GOST 24.702-85 Effectiveness of automated control systems. Basic provisions.
- Kasatkin A.S., Kuzmin I.V. Evaluating the effectiveness of automated control systems. – Moscow: Energiya, 1967. – 80 p.
- Alexandrov A.G. Optimal and adaptive systems // Tutorial. – M.: Higher School, 1989. – 263 p.
- Orekhov A.A., Dorofeev N.V. Investigation of influence of groundwater regime on geodynamic control objects // Algorithms, methods and data processing systems, 2012, № 21. – P. 46-52.
«Engineering industry and life safety» №4 (18), 2013. Pages: 35-38
Dorofeev Nikolay Viktorovich – Ph.D., Murom Institute of Vladimir State University, Murom, Russia. E-mail: DorofeevNV@yandex.ru
Orekhov Aleksandr Aleksandrovich – Teacher, Murom Institute of Vladimir State University, Murom, Russia. E-mail: alexorems@yandex.ru
Romanov Roman Vyacheslavovich – Graduate student, Murom Institute of Vladimir State Uni-versity, Murom, Russia. E-mail: romanov.roman.5@yandex.ru
Dorofeev N.V., Orekhov A.A., Romanov R.V. Correction algorithm of geodynamic monitoring system probing signal
Correction algorithm of geodynamic monitoring system probing signal
Dorofeev N.V., Orekhov A.A., Romanov R.V.
The paper considers the correction algorithm of geodynamic monitoring system probing signal developed on the basis of equipotential geoelectric method. The described correction algorithm is designed for processing data received from temperature and humidity sensors, proximity transformer sensors in order to reduce the influence of temperature and hydrological interference on the performance of geodynamic monitoring system of subsurface soil. The correction algorithm under discussion can be easily employed in existing geodynamic monitoring systems after the introduction of minor changes to them. For the correction algorithm operation you must have a geoelectric section study area; a geoelectric model of the geological study area section, taking into account soils electromagnetic properties; soil database, their properties and their dependences on temperature and humidity.
Keywords: geoelectric monitoring system, monitoring system, geoecology, geo-ecological monitoring, forecasting.
References
- Orekhov A.A., Dorofeev N.V. Information-measuring system for monitoring geodynamic geoelectric objects // Radio Engineering and Telecommunication Systems, 2012, № 2. – P. 60-62.
- Dorofeev N.V.,Orekhov A.A. Increase the efficiency of the geodynamic control through the introduction of new geoelectric models // Engineering industry and life safety, 2012, № 3. – P. 11-14.
- Instanes A. Arctic Climate Impact As-sessment – Scientific Report, 2006, chapter 16.
- Orekhov A.A., Dorofeev N.V. Investigation of influence of groundwater regime on geodynamic control objects // Algorithms, methods and data processing systems, 2012, № 21. – P. 46-52.
- Kamshilin A.N., Kuzichkin O.R., Tsaplev A.V. Study the effects of climate interference in multichannel measurement device geoelectric signals // Radiotechnology, 2008, № 9. – P. 129-133.
- Tsaplev A.V., Kuzichkin O.R. Application of regression processing to compensate for thermal interference in the geoelectric monitoring // Listening to the radio industry, 2012, № 2. – P. 147-153.
- Orekhov A.A., Dorofeev N.V. Algorithm for correcting the influence of interference on the hydrological monitoring geodynamic objects // Algorithms, methods and data processing systems, 2012, № 22. – P. 74-78.
«Engineering industry and life safety» №4 (18), 2013. Pages: 31-34
Dorofeev Nikolay Viktorovich – Ph.D., Murom Institute of Vladimir State University, Murom, Russia. E-mail: DorofeevNV@yandex.ru
Orekhov Aleksandr Aleksandrovich – Teacher, Murom Institute of Vladimir State University, Murom, Russia. E-mail: alexorems@yandex.ru
Romanov Roman Vyacheslavovich – Graduate student, Murom Institute of Vladimir State Uni-versity, Murom, Russia. E-mail: romanov.roman.5@yandex.ru
Orekhov A.A., Dorofeev N.V., Romanov R.V. Technical diagnostics of the contactless transformer sensors blocks of geodynamic monitoring system
Technical diagnostics of the contactless transformer sensors blocks of geodynamic monitoring system
Orekhov A.A., Dorofeev N.V., Romanov R.V.
Monitoring systems of geodynamic objects built on the basis of multi-polar electrolocation equipment are widely used now due to the increased danger of technogenic catastrophes causing instability of geological structures. These systems consist of emitting electrodes and receiving contactless transformer sensors located directly in soil. Characteristics of the block components change over a wide range and sometimes fail due to severe service conditions of the sensors. The purpose of this paper is to develop technical diagnostics subsystem of the contactless transformer sensors blocks, allowing to identify characteristic deviations of block components from operational ones when operating geodynamic monitoring system on the object under control. It is important to identify block component failures transferring data to the central station.
Keywords: environmental monitoring, geoelectric control, geodynamic object, technical diagnostics.
References
- Kuzichkin O.R., Orekhov A.A. Design of the measuring path of the geoelectric monitoring // Design and technology of electronic means, 2011, № 1. – P. 25-30.
- Mozgalevskiy A.V., Koyda A.V. Issues of diagnostic system design. – L. Energoatomizdat, 1985. – 112 p.
- Orekhov A.A., Dorofeev N.V. . Information-measuring system for geoelectrical monitoring of geodynamic objects // Radio Engineering and Telecommunication Systems, 2012, № 2, – P. 60-62.
- Safarbakov A.M. Basics of technical diagnostics: a training manual. – Irkutsk: IrGUPS 2006. – 216 p.
«Engineering industry and life safety» №2 (16), 2013. Pages: 29-32
Orekhov Aleksandr Aleksandrovich – Teacher, Murom Institute of Vladimir State University, Murom, Russia. E-mail: alexorems@yandex.ru
Dorofeev Nikolay Viktorovich – Ph.D., Murom Institute of Vladimir State University, Murom, Russia. E-mail: DorofeevNV@yandex.ru
Romanov Roman Vyacheslavovich – Graduate student, Murom Institute of Vladimir State University, Murom, Russia. E-mail: romanov.roman.5@yandex.ru
Dorofeev N.V., Orekhov A.A., Romanov R.V. Organization of a regional retrieve data in the geographic analytical information system of geoecological monitoring
Organization of a regional retrieve data in the geographic analytical information system of geoecological monitoring
Dorofeev N.V., Orekhov A.A., Romanov R.V.
This paper discusses the general principles of data collection at the regional level in the geographic information system geo-analytical monitoring. The generalized structure of information processing at a regional midbelieving the data.
Keywords: geoelectrical monitoring system, data transmission, measuring circuit, the geographic information and analysis system, GIS, system monitoring, geo-ecology, geo-ecological monitoring.
References
- Dorofeyev N.V., Kuzichkin O.R. Allocation algorithm irregular perturbations of the geomagnetic field on a network of stations // Mathematical and software of computer systems. – Moscow: Publishing House of the “Hot Line – Telecom”, 2007. – P. 28-32.
- Kuzichkin O.R., Orekhov A.A., Kuligin M.N. Measuring channel recording system geomagnetic signals // Questions electronics. 2010, T1, № 1. – P. 122-128.
- Dorofeyev N.V., Kuzichkin O.R., Orekhov A.A. Initial signal processing in distributed networks registration geomagnetic field. // Information Systems and Technology, №4, 2010. – P. 119-122.
«Engineering industry and life safety» №2 (12), 2012. Pages: 30-32
Dorofeev Nikolay Viktorovich – Ph.D., Murom Institute of Vladimir State University, Murom, Russia. E-mail: DorofeevNV@yandex.ru
Orekhov Aleksandr Aleksandrovich – Teacher, Murom Institute of Vladimir State University, Murom, Russia. E-mail: alexorems@yandex.ru
Romaniv Roman Vjacheslavovich – Engineer, Murom Institute of Vladimir State University, Murom, Russia. E-mail: romanov.roman.5@yandex.ru
Dorofeev N.V., Orekhov A.A., Romanov R.V. Automated global geoecological monitoring on the basis of GIAS
Automated global geoecological monitoring on the basis of GIAS
Dorofeev N.V., Orekhov A.A., Romanov R.V.
The work discusses the application of service-oriented architecture, geographic information-analytical system of geoecological monitoring.
Keywords: geoelectrical monitoring system, the geographic information and analysis system, GIS, system monitoring, geo-ecology, geo-ecological monitoring.
References
- Dorofeyev N.V., Kuzichkin O.R. Allocation algorithm irregular perturbations of the geomagnetic field on a network of stations // Mathematical and software of computer systems. – Moscow: Publishing House of the “Hot Line – Telecom”, 2007. – P. 28-32.
- Kuzichkin O.R., Orekhov A.A., Kuligin M.N. Measuring channel recording system geomagnetic signals // Questions electronics. 2010, T1, № 1. – P. 122-128.
- Dorofeyev N.V., Kuzichkin O.R., Orekhov A.A. Initial signal processing in distributed networks registration geomagnetic field. // Information Systems and Technology, №4, 2010. – P. 119-122.
- Pavlov S.V. Service-oriented architecture in the worldwide enterprise GIS // Management, Computer Science and Informatics. – Ufa: USATU, 2010, Vol. 14, № 5.
«Engineering industry and life safety» №2 (12), 2012. Pages: 26-29
Dorofeev Nikolay Viktorovich – Ph.D., Murom Institute of Vladimir State University, Murom, Russia. E-mail: DorofeevNV@yandex.ru
Orekhov Aleksandr Aleksandrovich – Teacher, Murom Institute of Vladimir State University, Murom, Russia. E-mail: alexorems@yandex.ru
Romaniv Roman Vjacheslavovich – Engineer, Murom Institute of Vladimir State University, Murom, Russia. E-mail: romanov.roman.5@yandex.ru